博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
配置插件hadoop-1.2.1 eclipse开发环境 【hadoop的eclipse插件hadoop-eclipse-plugin-1.2.1.jar 下载地址和具体用法】
阅读量:2352 次
发布时间:2019-05-10

本文共 12037 字,大约阅读时间需要 40 分钟。



文章来源:

hadoop的eclipse插件hadoop-eclipse-plugin-1.2.1.jar 下载地址【0积分下载】:

配置hadoop-eclipse开发环境

由于hadoop-eclipse-1.2.1插件需要自行编译,所以为了图省事而从网上直接下载了这个jar包,所以如果有需要可以从。下载这个jar包后,将它放置在eclipse/plugins目录下,并重启eclipse即可。

如果你需要自己编译该插件,请参考。

配置hadoop-1.2.1与eclipse链接信息

如果没有意外,在你的eclipse的右上角应该出现了一只蓝色的大象logo,请点击那只大象。之后,在正下方的区域将会多出一项Map/Reduce Locations的选项卡,点击该选项卡,并右键新建New Hadoop Location

这时应该会弹出一个对话框,需要你填写这些内容:

  • Location name
  • Map/Reduce Master
  • DFS Master
  • User name

Location name 指的是当前创建的链接名字,可以任意指定;Map/Reduce Master 指的是执行MR的主机地址,并且需要给定hdfs协议的通讯地址; DFS Master 指的是Distribution File System的主机地址,并且需要给定hdfs协议的通讯地址; User name 指定的是链接至Hadoop的用户名。

参考上一篇文章的设计,,这里的配置信息将沿用上一篇文章的设定。

因此,我们的设置情况如下

参数名 配置参数 说明
Location name hadoop  
MapReduce Master Host: 192.168.145.100 NameNode 的IP地址
MapReduce Master Port: 8021 MapReduce Port,参考自己配置的mapred-site.xml
DFS Master Port: 8020 DFS Port,参考自己配置的core-site.xml
User name hadoop  

之后,切换到Advanced parameters,而你需要修改的有如下参数

参数名 配置参数 说明
fs.default.name hdfs://192.168.145.100:8020 参考core-site.xml
hadoop.tmp.dir /home/hadoop/hadoopdata/tmp 参考core-site.xml
mapred.job.tracker hdfs://192.168.145.100:8021 参考mapred-site.xml

之后确认,这样便在eclipse左边出现了HDFS的文件结构。但是现在你只能查看,而不能添加修改文件。因此你还需要手工登录到HDFS上,并使用命令修改权限。

./bin/hadoop fs -chmod -R 777 /

在完成这些步骤后,需要配置最后的开发环境了。

配置开发环境

如果是在Windows上模拟远程开发,那么你需要将hadoop-1.2.1.tar.gz解压一份,我们将解压后得到的hadoop-1.2.1放置在documents里

C:\Users\ISCAS\Documents\src\hadoop-1.2.1

之后,打开 eclipse -> Preferences -> Hadoop Map/Reduce,将解压后的路径添加在 hadoop installation directory 中,并点击apply使设置生效。

这个时候,我们可以试着编译一两个Hadoop程序, File -> Map/Reduce -> Map/Reduce Project 或者直接通过 Project Wizzard 新建一个Hadoop项目,并命名该项目为 Hadoop Test。

我们的第一个程序是 wordcount, 源代码可以从 ..\hadoop-1.2.1\src\examples\org\apache\hadoop\examples 中获得。

/** *  Licensed under the Apache License, Version 2.0 (the "License"); *  you may not use this file except in compliance with the License. *  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. */    package org.apache.hadoop.examples;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;public class WordCount {  public static class TokenizerMapper        extends Mapper
{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer
{ private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable
values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount
"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); }}

这里面,为了方便,我们直接贴出该代码。准备好后,就可以直接点击 Run 命令,对代码进行编译。不过在编译前,会弹出一个小窗口,选择 Run on Hadoop,并确认。

等待一段时间,编译后并执行后,你会发现出现一段提示:

Usage: wordcount 

WordCount例程,需要输入文件,并且需要指定输出的文件存放目录。因此,我们还需要为程序设定参数。方法是,在Run命令下,选择Run Configurations。

在 Arguments 选项卡中,Program arguments一栏里,指定输入和输出的参数。

我们给定的需要进行统计的文本存放在 /Data/words。

Mary had a little lambits fleece very white as snowand everywhere that Mary wentthe lamb was sure to go

所以设定的参数为:

hdfs://192.168.145.100:8020/Data/words hdfs://192.168.145.100:8020/out

配置好参数,并运行,如果你使用的是Windows版本的eclipse,会报出这个错误:

14/05/29 13:49:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable14/05/29 13:49:16 ERROR security.UserGroupInformation: PriviledgedActionException as:ISCAS cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-ISCAS\mapred\staging\ISCAS1655603947\.staging to 0700Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-ISCAS\mapred\staging\ISCAS1655603947\.staging to 0700    at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:691)    at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:664)    at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:514)    at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:349)    at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:193)    at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:126)    at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:942)    at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:936)    at java.security.AccessController.doPrivileged(Native Method)    at javax.security.auth.Subject.doAs(Unknown Source)    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)    at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:936)    at org.apache.hadoop.mapreduce.Job.submit(Job.java:550)    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:580)    at org.apache.hadoop.examples.WordCount.main(WordCount.java:82)

这个错误在 Linux 系统中是不存在的,因此我们需要对 hadoop 的代码做一些小修改。

修改 Hadoop 源码

导致这一问题的是Windows文件权限问题,不过这一问题在Linux系统下是不存在的,因此如果你需要在Windows下进行编程,那么建议你按照我们提供的方法对hadoop的源码进行修改。

出现问题的文件,位于 hadoop-1.2.1\src\core\org\apache\hadoop\fs\ 下的FileUtil.java。

修改方法是将

private static void checkReturnValue(boolean rv, File p,                                     FsPermission permission)                                throws IOException{    /**    * comment the following, disable this function    if (!rv)    {        throw new IOException("Failed to set permissions of path: " + p +                         " to " +                        String.format("%04o", permission.toShort()));    }    */       }

然后将修改好的文件重新编译,并将.class文件打包到hadoop-core-1.2.1.jar中,并重新刷新工程。这里,我们提供了已经修改后的jar文件包,如果需要可以点击,并替换掉原有的hadoop-1.2.1中的jar包。

运行Hadoop源码

再次运行WordCount例程,Hadoop便会正常启动了。

14/05/29 15:13:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable14/05/29 15:13:59 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).14/05/29 15:13:59 INFO input.FileInputFormat: Total input paths to process : 114/05/29 15:13:59 WARN snappy.LoadSnappy: Snappy native library not loaded14/05/29 15:13:59 INFO mapred.JobClient: Running job: job_local889277352_000114/05/29 15:13:59 INFO mapred.LocalJobRunner: Waiting for map tasks14/05/29 15:13:59 INFO mapred.LocalJobRunner: Starting task: attempt_local889277352_0001_m_000000_014/05/29 15:13:59 INFO mapred.Task:  Using ResourceCalculatorPlugin : null14/05/29 15:13:59 INFO mapred.MapTask: Processing split: hdfs://192.168.145.100:8020/Data/words:0+10914/05/29 15:13:59 INFO mapred.MapTask: io.sort.mb = 10014/05/29 15:13:59 INFO mapred.MapTask: data buffer = 79691776/9961472014/05/29 15:13:59 INFO mapred.MapTask: record buffer = 262144/32768014/05/29 15:13:59 INFO mapred.MapTask: Starting flush of map output14/05/29 15:13:59 INFO mapred.MapTask: Finished spill 014/05/29 15:13:59 INFO mapred.Task: Task:attempt_local889277352_0001_m_000000_0 is done. And is in the process of commiting14/05/29 15:13:59 INFO mapred.LocalJobRunner: 14/05/29 15:13:59 INFO mapred.Task: Task 'attempt_local889277352_0001_m_000000_0' done.14/05/29 15:13:59 INFO mapred.LocalJobRunner: Finishing task: attempt_local889277352_0001_m_000000_014/05/29 15:13:59 INFO mapred.LocalJobRunner: Map task executor complete.14/05/29 15:13:59 INFO mapred.Task:  Using ResourceCalculatorPlugin : null14/05/29 15:13:59 INFO mapred.LocalJobRunner: 14/05/29 15:13:59 INFO mapred.Merger: Merging 1 sorted segments14/05/29 15:13:59 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 219 bytes14/05/29 15:13:59 INFO mapred.LocalJobRunner: 14/05/29 15:14:00 INFO mapred.Task: Task:attempt_local889277352_0001_r_000000_0 is done. And is in the process of commiting14/05/29 15:14:00 INFO mapred.LocalJobRunner: 14/05/29 15:14:00 INFO mapred.Task: Task attempt_local889277352_0001_r_000000_0 is allowed to commit now14/05/29 15:14:00 INFO output.FileOutputCommitter: Saved output of task 'attempt_local889277352_0001_r_000000_0' to hdfs://192.168.145.100:8020/out14/05/29 15:14:00 INFO mapred.LocalJobRunner: reduce > reduce14/05/29 15:14:00 INFO mapred.Task: Task 'attempt_local889277352_0001_r_000000_0' done.14/05/29 15:14:00 INFO mapred.JobClient:  map 100% reduce 100%14/05/29 15:14:00 INFO mapred.JobClient: Job complete: job_local889277352_000114/05/29 15:14:00 INFO mapred.JobClient: Counters: 1914/05/29 15:14:00 INFO mapred.JobClient:   Map-Reduce Framework14/05/29 15:14:00 INFO mapred.JobClient:     Spilled Records=4014/05/29 15:14:00 INFO mapred.JobClient:     Map output materialized bytes=22314/05/29 15:14:00 INFO mapred.JobClient:     Reduce input records=2014/05/29 15:14:00 INFO mapred.JobClient:     Map input records=414/05/29 15:14:00 INFO mapred.JobClient:     SPLIT_RAW_BYTES=10314/05/29 15:14:00 INFO mapred.JobClient:     Map output bytes=19514/05/29 15:14:00 INFO mapred.JobClient:     Reduce shuffle bytes=014/05/29 15:14:00 INFO mapred.JobClient:     Reduce input groups=2014/05/29 15:14:00 INFO mapred.JobClient:     Combine output records=2014/05/29 15:14:00 INFO mapred.JobClient:     Reduce output records=2014/05/29 15:14:00 INFO mapred.JobClient:     Map output records=2214/05/29 15:14:00 INFO mapred.JobClient:     Combine input records=2214/05/29 15:14:00 INFO mapred.JobClient:     Total committed heap usage (bytes)=29045555214/05/29 15:14:00 INFO mapred.JobClient:   File Input Format Counters 14/05/29 15:14:00 INFO mapred.JobClient:     Bytes Read=10914/05/29 15:14:00 INFO mapred.JobClient:   FileSystemCounters14/05/29 15:14:00 INFO mapred.JobClient:     HDFS_BYTES_READ=21814/05/29 15:14:00 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=13772614/05/29 15:14:00 INFO mapred.JobClient:     FILE_BYTES_READ=55714/05/29 15:14:00 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=13714/05/29 15:14:00 INFO mapred.JobClient:   File Output Format Counters 14/05/29 15:14:00 INFO mapred.JobClient:     Bytes Written=137

查看在HDFS文件系统中新生成的out文件夹,可以看见生成的part-r-00000,其结果为:

Mary    2a    1and    1as    1everywhere    1fleece    1go    1had    1its    1lamb    2little    1snow    1sure    1that    1the    1to    1very    1was    1went    1white    1

转载地址:http://bbgvb.baihongyu.com/

你可能感兴趣的文章
java线程中信号量Semaphore类的应用
查看>>
如何设置CentOS为中文显示
查看>>
Nginx配置
查看>>
php-fpm配置
查看>>
Centos 系统时间与当前时间相差和时区解决办法
查看>>
Linux下如何进行FTP设置
查看>>
linux之LVM操作案例
查看>>
由于CentOS的系统安装了epel-release-latest-7.noarch.rpm 导致在使用yum命令时出现Error: xz compression not available问题。
查看>>
php中抽象类和接口的概念与区别
查看>>
php抽象类和接口
查看>>
如何在linux CentOS 上安装chrome 谷歌浏览器
查看>>
laravel5 怎么实现事务
查看>>
GitLab安装说明
查看>>
Git查看、删除、重命名远程分支和tag
查看>>
PHP类中的抽象类,抽象方法,abstract
查看>>
PHP接口类interface的正确使用方法
查看>>
Sencha Touch之Hello World
查看>>
Tab Layout 之单个Activity实现
查看>>
Tab Layout 之多个Activity实现
查看>>
FrameLayout之我见
查看>>